Search results for " sio2"
showing 10 items of 15 documents
Structural Modification Processes in Bulk and Nano-sized Amorphous SiO2 Systems.
2011
Structural relaxation of E_gamma centers in amorphous silica
2002
We report experimental evidence of the existence of two variants of the E' gamma centers induced in silica by gamma rays at room temperature. The two variants are distinguishable by the fine features of their line shapes in paramagnetic resonance spectra. These features suggest that the two E' gamma differ for their topology. We find a thermally induced interconversion between the centers with an activation energy of about 34 meV. Hints are also found for the existence of a structural configuration of minimum energy and of a metastable state.
Photocatalytic activity of TiO2/SiO2 systems
2009
Silica-supported TiO(2) powders were synthesized by a wet method under mild conditions. The aim of the work was the preparation of TiO(2)/SiO(2) additives for photocatalytic cements. Three types of commercial SiO(2) were used as supports: Cabot, Axim and Fly Ash. Cabot silica was ultra-pure whereas the other two silica contained different percentages of various oxides. The TiO(2)/SiO(2) samples, denoted TiO(2)/Cabot, TiO(2)/Axim and TiO(2)/Fly Ash, were prepared by boiling suspensions obtained by addition of silica to a solution of TiCl(4) in water (volume ratio 1:10). The photocatalytic activity was evaluated in a gas-solid system both in batch and in continuous reactors using 2-propanol a…
Effect of oxygen deficiency on the radiation sensitivity of sol-gel Ge-doped amorphous SiO2
2008
We report experimental investigation by electron paramagnetic resonance (EPR) measurements of room temperature γ-ray irradiation effects in sol-gel Ge doped amorphous SiO2. We used materials with Ge content from 10 up to 104 part per million (ppm) mol obtained with different preparations. These latter gave rise to samples characterized by different extents of oxygen deficiency, estimated from the absorption band at ~5.15 eV of the Ge oxygen deficient centers (GeODC(II)). The irradiation at doses up to ~400 kGy induces the E'-Ge, Ge(1) and Ge(2) paramagnetic centers around g ~ 2 with concentrations depending on Ge and on GeODC(II) content. We found correlation between Ge(2) and GeODC(II) con…
Isolation of the CH3˙ rotor in a thermally stable inert matrix: first characterization of the gradual transition from classical to quantum behaviour …
2014
International audience; Matrix isolation is a method which plays a key role in isolating and characterizing highly reactive molecularradicals. However, the isolation matrices, usually composed of noble gases or small diamagnetic molecules,are stable only at very low temperatures, as they begin to desegregate even above a few tens of Kelvin.Here we report on the successful isolation of CH3 radicals in the cages of a nearly inert clathrate–SiO2matrix. This host is found to exhibit a comparable inertness with respect to that of most conventionalnoble gas matrices but it is characterized by a peculiar thermal stability. The latter property is related to thecovalent nature of the host material a…
EPR investigation on the polyamorphic transformation induced by electron irradiation in SiO2 glass
2013
The role of impurities in the irradiation induced densification of amorphous SiO(2).
2011
In a recent work (Buscarino et al 2009 Phys. Rev. B 80 094202), by studying the properties of the (29)Si hyperfine structure of the E'(γ) point defect, we have proposed a model able to describe quantitatively the densification process taking place upon electron irradiation in amorphous SiO(2) (a-SiO(2)). In particular, we have shown that it proceeds heterogeneously, through the nucleation of confined densified regions statistically dispersed into the whole volume of the material. In the present experimental investigation, by using a similar approach on a wider set of materials, we explore how this process is influenced by impurities, such as OH and Cl, typically involved in relevant concent…
H(II) centers in natural silica under repeated UV laser irradiations
2004
We investigated the kinetics of H(II) centers (=Ge'-H) in natural silica under repeated 266nm UV irradiations performed by a Nd:YAG pulsed laser. UV photons temporarily destroy these paramagnetic defects, their reduction being complete within 250 pulses. After re-irradiation, H(II) centers grow again, and the observed recovery kinetics depends on the irradiation dose; multiple 2000 pulses re-irradiations induce the same post-irradiation kinetics of H(II) centers after each exposure cycle. The analysis of these effects allows us to achieve a deeper understanding of the dynamics of the centers during and after laser irradiation.
Structural organization of silanol and silicon hydride groups in the amorphous silicon dioxide network
2011
We present a study on the effects of an isothermal annealing treatment on a-SiO 2 having a significant content of silanol hydride groups (Si-H). We examined the properties of the IR absorption bands of silanol (Si-OH) and silicon hydride groups as a function of the duration of the thermal treatment. We showed that the Si-OH and Si-H groups contents decrease in a linearly correlated way. The annealing dynamics suggest that the two species are close to each other in the amorphous network. We showed that the profile of the silanol groups absorption band is the same as that observed in other commercial a-SiO 2 materials, irrespectively of the concomitant presence of nearby Si-H groups, and, mor…
Electroluminescence and transport properties in amorphous silicon nanostructures
2006
We report the results of a detailed study on the structural, electrical and optical properties of light emitting devices based on amorphous Si nanostructures. Amorphous nanostructures may constitute an interesting system for the monolithic integration of optical and electrical functions in Si ULSI technology. In fact, they exhibit an intense room temperature electroluminescence (EL), with the advantage of being formed at a temperature of 900 °C, while at least 1100 °C is needed for the formation of Si nanocrystals. Optical and electrical properties of amorphous Si nanocluster devices have been studied in the temperature range between 30 and 300 K. The EL is seen to have a bell-shaped trend …